Dấu căn viết như thế kia rất khó đọc. Bạn cần viết lại bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Dấu căn viết như thế kia rất khó đọc. Bạn cần viết lại bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Giải phương trình
P=\(\left(\dfrac{2}{x-\sqrt{x}}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\): \(\dfrac{\sqrt{x}-1}{2\sqrt{x}-x}\)
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
Giải phương trình:
\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}}{\sqrt{x}+1}\) ( điều kiện: x ≥ 0, x ≠ 1)
a, Giải phương trình: 2\(\left(x-\sqrt{2x^2+5x-3}\right)=1+x\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
b, Cho ba số thực dương a,b,c thỏa mãn a,b,c=1
Chứng minh rằng:\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
Giải phương trình
\(a.\dfrac{3}{4}\sqrt{4x}-\sqrt{4x}+5=\dfrac{1}{4}\sqrt{4x}\)
\(b.\sqrt{3-x}-\sqrt{27-9x}+1,25.\sqrt{48-16x}=6\)
\(c.\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\dfrac{2}{7}\)
\(d.\sqrt{9x^2+12x+4}=4\)
Giải phương trình:
\(\dfrac{3}{x^2-3x+3}+x^2-3x-3=0\)
Giải phương trình
a, \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
Giải phương trình sau: \(\sqrt{x^2-3x+2}+3=3\sqrt{x-1}+\sqrt{x-2}\)
Giải phương trình vô tỉ:
1) \(8x^2+\sqrt{\dfrac{1}{x}}=\dfrac{5}{2}\)
2) \(x^2+2x+4=3\sqrt{x^3+4x}\)
3) \(\sqrt{\dfrac{x^3}{3-4x}}-\dfrac{1}{2\sqrt{x}}=\sqrt{x}\)
4) \(\sqrt{\dfrac{5\sqrt{2}+7}{x+1}}+4x=3\sqrt{2}-1\)