MV

Giải phương trình:

e) \(\sqrt{x^2}=\left|-8\right|\)

Tính:

e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)

f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

AT
2 tháng 7 2021 lúc 16:27

e) \(\sqrt{x^2}=\left|-8\right|\Rightarrow\left|x\right|=8\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}=\sqrt{\dfrac{8-2\sqrt{7}}{2}}-\sqrt{\dfrac{8+2\sqrt{7}}{2}}+\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}+\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}+\sqrt{2}\)

\(=\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}+\sqrt{2}=\dfrac{\sqrt{7}-1}{\sqrt{2}}-\dfrac{\sqrt{7}+1}{\sqrt{2}}+\sqrt{2}\)

\(=-\dfrac{2}{\sqrt{2}}+\sqrt{2}=-\sqrt{2}+\sqrt{2}=0\)

f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{12+2\sqrt{11}}{2}}-\sqrt{\dfrac{12-2\sqrt{11}}{2}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{11}\right)^2+2.\sqrt{11}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}\right)^2-2.\sqrt{11}.1+1^2}{2}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{11}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}-1\right)^2}{2}}+3\sqrt{2}\)

\(=\dfrac{\left|\sqrt{11}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{11}-1\right|}{\sqrt{2}}+3\sqrt{2}=\dfrac{\sqrt{11}+1}{\sqrt{2}}-\dfrac{\sqrt{11}-1}{\sqrt{2}}+3\sqrt{2}\)

\(=\dfrac{2}{\sqrt{2}}+3\sqrt{2}=\sqrt{2}+3\sqrt{2}=4\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
H24
Xem chi tiết
1N
Xem chi tiết
KT
Xem chi tiết
HT
Xem chi tiết
NQ
Xem chi tiết
TT
Xem chi tiết
TC
Xem chi tiết
NH
Xem chi tiết