\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
help me now
\(\left(x-x^2\right)\left(\sqrt{x-2}+2\right)=2x^3-5x^2+5x-2\)
\(\sqrt{2x-3+\sqrt{4x-7}}+\sqrt{2x+9+5\sqrt{4x-7}}=4\sqrt{2}\)
\(\left(\sqrt{3x+1}-\sqrt{x+2}\right)\left(\sqrt{3x^2+7x+2}+9\right)=6x-3\)
Giải phương trình
a) \(\sqrt{4x^2-1}+\sqrt{x}=\sqrt{2x^2-x}+\sqrt{2x+1}\)
b) \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
c) \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{\left(3x-2\right)\left(x-1\right)}\)
d) \(7+2\sqrt{x}-x=\left(2+\sqrt{x}\right)\sqrt{7-x}\)
e) \(\sqrt{x+1}+\sqrt{6x-14}=x^2-5\)
Giải phương trình:
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
b)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
d) \(\sqrt{x^2-6x+9}+x=11\)
e) \(\sqrt{3x^2-4x+3}=1-2x\)
f) \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
g) \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
(Nghi binh 20/09)
Giải các phương trình sau:
a)\(32x^4-80x^3+50x^2+4x-3-4\sqrt{x-1}=0\)
b) \(\sqrt{5x^3-12x^2+12x-7}=\frac{x^2}{2}+2x-3\)
c)\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
d)\(x+\sqrt{2x-3}=1+\sqrt{x-1}+\sqrt{x^2-3x+3}\)
e) \(\left(2x-1\right)\sqrt{x^2+1}=x^2+4x-5\)
f)\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\)
g)\(2\left(x^2+2x+3\right)=5\sqrt{x^3+3x^2+3x+2}\)
h)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
i)\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
a. \(\sqrt{\left(2x+3\right)^2}=x+1\)
b. \(\sqrt{\left(2x-1\right)^2}=x+1\)
c. \(\sqrt{x+3}=5\)
d. \(\sqrt{x+2}=\sqrt{7}\)
e. \(5\sqrt{x}=20\)
f. \(\sqrt{x+4}=7\)
g. \(\sqrt{\left(2x+1\right)^2}=3\)
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)