Đặt: \(\sqrt{x}=t\left(t\ge0\right)\)
Nên \(\sqrt{8+t}+\sqrt{5-t}=5\)
\(\Rightarrow\sqrt{8+t}+\sqrt{5-t}-5=0\)
\(\Rightarrow\left(\sqrt{8+t}-3\right)+\left(\sqrt{5-t}-2\right)=0\)
\(\Rightarrow\dfrac{t-1}{\sqrt{8+t}+3}+\dfrac{t-1}{\sqrt{5-t}+2}=0\Leftrightarrow\left(t-1\right)\left(\dfrac{1}{\sqrt{8+t}+3}+\dfrac{1}{\sqrt{5-t}+2}\right)=0\)
\(t=1\Leftrightarrow x=1\left(tm\right)\)