Bài 1: Mở đầu về phương trình

DT

giải phương trình bằng cách đặt ẩn phụ:

x(x+1)(x+3)(x+4)=40

TH
9 tháng 2 2019 lúc 20:52

Ta có:

x(x + 1)(x + 3)(x + 4) = 40

\(\Leftrightarrow\left[x\left(x+4\right)\right]\left[\left(x+1\right)\left(x+3\right)\right]=40\)

<=> (x2 + 4x)(x2 + 4x + 3) = 40 (*)

Đặt x2 + 4x = t. Phương trình (*) trở thành: t(t + 3) = 40

\(\Leftrightarrow\left(t+1,5-1,5\right)\left(t+1,5+1,5\right)=40\)

<=> (t + 1,5)2 - 2,25 = 40

\(\Leftrightarrow\left(t+1,5\right)^2=42,25\)

\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-8\end{matrix}\right.\)

Đến đây tự thay x vào rồi giải tiếp

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
HA
Xem chi tiết
CP
Xem chi tiết
DA
Xem chi tiết
NM
Xem chi tiết
LN
Xem chi tiết
HN
Xem chi tiết
NP
Xem chi tiết
NM
Xem chi tiết