Ôn tập chương 1: Căn bậc hai. Căn bậc ba

TF

Giải phương trình :

\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)

NL
15 tháng 7 2020 lúc 21:47

Nhìn quen quen, bài giải pt của KHTN mấy hôm trước thì phải

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{5-x}=a\ge0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}11a+8b=24+3ab\\2a^2+b^2=9\end{matrix}\right.\)

\(\Rightarrow11a+8b=2a^2+b^2+15+3ab\)

\(\Leftrightarrow2a^2+\left(3b-11\right)a+b^2-8b+15=0\)

\(\Delta=\left(3b-11\right)^2-8\left(b^2-8b+15\right)=\left(b-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{11-3b-b+1}{2}=6-2b\\a=\frac{11-3b+b-1}{2}=5-b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{5-x}=6-2\sqrt{2x-1}\\\sqrt{5-x}=5-\sqrt{2x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+2\sqrt{2x-1}=6\\\sqrt{5-x}+\sqrt{2x-1}=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\sqrt{\left(5-x\right)\left(2x-1\right)}=35-7x\\2\sqrt{\left(5-x\right)\left(2x-1\right)}=21-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}16\left(5-x\right)\left(2x-1\right)=49\left(5-x\right)^2\\4\left(5-x\right)\left(2x-1\right)=\left(21-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
KC
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
VC
Xem chi tiết
AP
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết