giải Bất phương trình :
\(\sqrt{x^2-5x-14}\ge2x-1\)
\(\sqrt{2x^2+7x+5}>x+1\)
\(\sqrt{x^2+4x-5}\le x+3\)
\(\sqrt{x^2+9}-\sqrt{x^2+7}\ge2\)giải phương trình
1.\(3\sqrt{x^2-25}=\left(2x-1\right)\sqrt{\frac{x-5}{x+5}}\)
2.\(\sqrt{\left(3x-1\right)\left(3x^2-4x+1\right)}=x-1\)
Giải bất phương trình: \(\sqrt[3]{3x+1}+\sqrt{2x+4}< 3-x\)
1) Giải bất phương trình sau:
a) \(x^2+\sqrt{x+11}=11\) b) \(9+\sqrt{9+x}=x\)
2) Xét dấu:
a) \(f\left(x\right)=\frac{\left(x^2-1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x^2-5x+4\right)}\) b) \(h\left(x\right)=\frac{1}{x^2-2x+3}-\frac{1}{x+2}\)
Giải phương trình \(\sqrt{2x^2+3x-1}=3-x^2\)
giải các bất phương trình sau :
a. \(\sqrt{x^2+x-12}< x+1\)
b.\(\sqrt{x^2-3x+10}\ge x-2\)
c.\(\sqrt{x^2-2x}>\sqrt{2x-3}\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
giải bất phương trình :
a,\(\sqrt{x^2-6x+2}>x+1\)
b. \(\sqrt{1-4x}< \sqrt{2x+1}\)
c. \(\sqrt{x-5}-\sqrt{9-x}>1\)
1.Tính tổng các nghiệm của phương trình: \(\sqrt{2x-x+3}-\sqrt{21x-17}+x^2-x=0\)
2.Phương trình: \(2x+5x-1=7\sqrt{x^3-1}\) có số nghiệm là mấy?