Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

PT

giải hpt:

\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y-\dfrac{1}{y}=3\\x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=5\end{matrix}\right.\)

NL
24 tháng 11 2018 lúc 10:58

Đặt \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=a\\y-\dfrac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}=a^2-2\\y^2+\dfrac{1}{y^2}=b^2+2\end{matrix}\right.\)hệ đã cho tương đương:

\(\left\{{}\begin{matrix}a+b=3\\a^2+b^2=5\end{matrix}\right.\) \(\Rightarrow a^2+\left(3-a\right)^2-5=0\Rightarrow a^2-3a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1;b=2\\a=2;b=1\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=1\\y-\dfrac{1}{y}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-x+1=0\left(vn\right)\\y^2-2y-1=0\end{matrix}\right.\) (loại)

TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y-\dfrac{1}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-2x+1=0\\y^2-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=\dfrac{1-\sqrt{5}}{2}\\y=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ đã cho có 2 cặp nghiệm:

\(\left(x;y\right)=\left(1;\dfrac{1-\sqrt{5}}{2}\right);\left(1;\dfrac{1+\sqrt{5}}{2}\right)\)

Bình luận (1)
TQ
24 tháng 11 2018 lúc 11:08

Đặt \(a=x+\dfrac{1}{x}\Leftrightarrow a^2=x^2+\dfrac{1}{x^2}+2\Leftrightarrow x^2+\dfrac{1}{x^2}=a^2-2\)

\(b=y-\dfrac{1}{y}\Leftrightarrow b^2=y^2+\dfrac{1}{y^2}-2\Leftrightarrow y^2+\dfrac{1}{y^2}=b^2+2\)

Nên \(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=5\Leftrightarrow a^2-2+b^2+2=5\Leftrightarrow a^2+b^2=5\)Vậy ta có hệ phương trình \(\left\{{}\begin{matrix}a+b=3\\a^2+b^2=5\left(1\right)\end{matrix}\right.\)

Ta có a+b=3\(\Leftrightarrow b=3-a\)

Thay b=3-a vào (1)\(\Leftrightarrow a^2+\left(3-a\right)^2=5\Leftrightarrow a^2+9-6a+a^2=5\Leftrightarrow2a^2-6a+4=0\Leftrightarrow2\left(a^2-3a+2\right)=0\Leftrightarrow a^2-3a+2=0\Leftrightarrow a^2-a-2a+2=0\Leftrightarrow a\left(a-1\right)-2\left(a-1\right)=0\Leftrightarrow\left(a-1\right)\left(a-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a-1=0\\a-2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}b=2\\b=1\end{matrix}\right.\)

TH1:\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+\dfrac{1}{x}=1\\y-\dfrac{1}{y}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2-x+1=0\\y^2-2y-1=0\end{matrix}\right.\)

Ta có \(x^2-x+1=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy phương trình (2) vô nghiệm

TH2: \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y-\dfrac{1}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2-2x+1=0\\y^2-y-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=\dfrac{1\pm\sqrt{5}}{2}\end{matrix}\right.\)

Vậy (x,y)={(\(1;\dfrac{1+\sqrt{5}}{2}\));(\(1;\dfrac{1-\sqrt{5}}{2}\))}

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
MM
Xem chi tiết
TA
Xem chi tiết
HD
Xem chi tiết
CD
Xem chi tiết
MH
Xem chi tiết