Phương trình (1) có hai cái x^2 là sao?
Phương trình (1) có hai cái x^2 là sao?
Giải hpt:
\(\left\{\begin{matrix}x^2+4y^2+x^2=4xy+2y+2\\4x^2+4xy+y^2=2x+y+56\end{matrix}\right.\)
giải hpt \(\left\{\begin{matrix}x^3=y^3+9\\x-x^2=2y^2+4y\end{matrix}\right.\)
Giải hệ pt : \(\left\{\begin{matrix}2x=y^2-4y+5\\2y=x^2-4x+5\end{matrix}\right.\)
Bài 1 giải hệ phương trình
a,\(\left\{\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
b,\(\left\{\begin{matrix}\left(x+y\right)^2-4x-4y=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
Giải hpt:
\(\left\{\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
Giải hpt:
\(\left\{\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
Giải hpt:
\(\left\{\begin{matrix}\left(x+y\right)^4+13=6x^2y^2-10\\xy\left(x^2+y^2\right)=-1\end{matrix}\right.\)
1)cho a,b,c>0 CMR \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
2)tìm x,y nguyên dương thỏa \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4xy+9\)
3) ghpt a) \(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^4+3=4y\\y^4+3=4x\end{matrix}\right.\)
Giải hpt:
\(\left\{\begin{matrix}x^2-xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)