Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

PT

giải hpt:

\(\left\{{}\begin{matrix}2x+2y+xy=5\\27\left(x+y\right)+y^3+7=26x^3+27x^2+9x\end{matrix}\right.\)

NL
24 tháng 11 2018 lúc 11:31

Biến đổi pt bên dưới:

\(27\left(x+y\right)+x^3+y^3+8=27x^3+27x^2+9x+1\)

\(\Leftrightarrow27\left(x+y\right)+\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+8=\left(3x+1\right)^3\) (1)

Biến đổi 1 xíu pt bên trên: \(xy=5-2\left(x+y\right)\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow b=5-2a\) thế vào (1) ta được:

\(27a+a\left(a^2-3\left(5-2a\right)\right)+8=\left(3x+1\right)^3\)

\(\Leftrightarrow27a+a^3+6a^2-15a+8=\left(3x+1\right)^3\)

\(\Leftrightarrow a^3+6a^2+12a+8=\left(3x+1\right)^3\Leftrightarrow\left(a+2\right)^3=\left(3x+1\right)^3\)

\(\Leftrightarrow a+2=3x+1\Leftrightarrow x+y+2=3x+1\Leftrightarrow y=2x-1\)

Thế vào pt đầu:

\(2x+2\left(2x-1\right)+x\left(2x-1\right)=5\Leftrightarrow2x^2+5x-7=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-\dfrac{7}{2}\Rightarrow y=-8\end{matrix}\right.\)

Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(1;1\right);\left(-\dfrac{7}{2};-8\right)\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
OW
Xem chi tiết
PP
Xem chi tiết
MN
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
AP
Xem chi tiết
NN
Xem chi tiết