Ôn tập Đường tròn

DD

giải hpt

a)\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\)

b)\(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x-\left(2-\sqrt{3}\right)y=2\\\left(2+\sqrt{3}\right)x+\left(\sqrt{2}-1\right)y=2\end{matrix}\right.\)

AH
14 tháng 8 2019 lúc 18:54

Lời giải:
a)

Nhân $\sqrt{2}$ vào PT(1) và $\sqrt{3}$ vào PT(2) ta có:

HPT \(\Leftrightarrow \left\{\begin{matrix} \sqrt{6}x-4y=7\sqrt{2}\\ \sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow (\sqrt{6}x-4y)-(\sqrt{6}x+9y)=13\sqrt{2}\)

\(\Leftrightarrow -13y=13\sqrt{2}\Rightarrow y=-\sqrt{2}\)

\(\Rightarrow x=\frac{7+2\sqrt{2}y}{\sqrt{3}}=\sqrt{3}\)

Vậy..............

b)

Nhân $2+\sqrt{3}$ vào PT(1) và $(\sqrt{2}+1)$ vào PT(2) thu được:

\(\left\{\begin{matrix} (\sqrt{2}+1)(2+\sqrt{3})x-y=2(2+\sqrt{3})\\ (2+\sqrt{3})(\sqrt{2}+1)+y=2(\sqrt{2}+1)\end{matrix}\right.\)

Trừ theo vế:

\(\Rightarrow -2y=2(2+\sqrt{3})-2(\sqrt{2}+1)=2+2\sqrt{3}-2\sqrt{2}\)

\(\Rightarrow y=\sqrt{2}-\sqrt{3}-1\)

\(\Rightarrow x=\frac{2+(2-\sqrt{3})y}{\sqrt{2}+1}=1+\sqrt{2}-\sqrt{3}\)

Vậy.........

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
LB
Xem chi tiết
DD
Xem chi tiết
CH
Xem chi tiết
AP
Xem chi tiết