Bài 5:
3xy+6x=1-y
=>\(3x\left(y+2\right)-1+y=0\)
=>\(3x\left(y+2\right)+y+2-3=0\)
=>\(3x\left(y+2\right)+\left(y+2\right)=3\)
=>(y+2)(3x+1)=3
=>\(\left(3x+1\right)\cdot\left(y+2\right)=1\cdot3=3\cdot1=\left(-1\right)\cdot\left(-3\right)=\left(-3\right)\cdot\left(-1\right)\)
=>\(\left(3x+1;y+2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(3x,y\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(-2;-5\right);\left(-4;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;1\right);\left(\dfrac{2}{3};-1\right);\left(-\dfrac{2}{3};-5\right);\left(-\dfrac{4}{3};-3\right)\right\}\)
mà x,y nguyên
nên \(\left(x,y\right)\in\left(0;1\right)\)