§3. Phương trình và hệ phương trình bậc nhất nhiều ẩn

MP
22 tháng 11 2017 lúc 20:34

\(\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\2x^2+xy+2y^2=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-3xy=-1\\2x^2+2y^2+xy=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-3xy=-1\\2\left(x^2+y^2\right)+xy=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy-3xy=-1\\2\left(\left(x+y\right)^2-2xy\right)+xy=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-5xy=-1\\2\left(x+y\right)^2-4xy+xy=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-5xy=-1\\2\left(x+y\right)^2-3xy=8\end{matrix}\right.\)....(1)

đặt : \(\left\{{}\begin{matrix}xy=u\\x+y=v\end{matrix}\right.\) \(\Rightarrow\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}v^2-5u=-1\\2v^2-3u=8\end{matrix}\right.\) giải phương trình này bằng phương pháp thế

sau khi tìm được \(u\)\(v\) tiếp đến ta áp dụng định lí vi ét đảo để tìm \(x\)\(y\)

Bình luận (0)

Các câu hỏi tương tự
KM
Xem chi tiết
LN
Xem chi tiết
UK
Xem chi tiết
LN
Xem chi tiết
VV
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết