$\begin{cases}xy+x^2=1+y\\xy+y^2=1+x\end{cases}$
`=>xy+x^2-xy-y^2=1+y-1-x`
`<=>x^2-y^2=y-x`
`<=>(x-y)(x+y)+x-y=0`
`<=>(x-y)(x+y+1)=0`
`+)x=y`
`=>x^2+x^2=1+x`
`<=>2x^2-x-1=0`
`<=>x=y=1\or\x=y=-1/2`
`+)x=-y-1`
`=>y(-y-1)+(-y-1)^2=1+y`
`<=>-y^2-y+y^2+2y+1=y+1`
`<=>y+1=y+1` luôn đúng.
Vậy `(x,y) in (1,1),(-1/2,-1/2),(-y-1,y)`