PP

Giải hệ phương trình \(\left\{{}\begin{matrix}x+\dfrac{2}{|y-1|}=5\\2x-\dfrac{3}{|y-1|}=0\end{matrix}\right.\)

H24
2 tháng 6 2021 lúc 16:19

$\begin{cases}x+\dfrac{2}{|y-1|}=5\\2x-\dfrac{3}{|y-1|}=0\end{cases}$

`<=>` $\begin{cases}3x+\dfrac{6}{|y-1|}=15\\4x-\dfrac{6}{|y-1|}=0\end{cases}$

`<=>` $\begin{cases}7x=15\\2x-\dfrac{3}{|y-1|}=0\end{cases}$

`<=>` $\begin{cases}x=\dfrac{15}{7}\\\dfrac{3}{|y-1|}=2x=\dfrac{30}{7}\end{cases}$

`<=>` $\begin{cases}x=\dfrac{15}{7}\\\dfrac{1}{|y-1|}=\dfrac{10}{7}\end{cases}$

`<=>` $\begin{cases}x=\dfrac{15}{7}\\|y-1|=\dfrac{7}{10}\end{cases}$

`<=>`$\begin{cases}x=\dfrac{15}{7}\\\left[ \begin{array}{l}y=\dfrac{17}{10}\\y=\dfrac{3}{10}\end{array} \right.\end{cases}$

`<=>` \(\left[ \begin{array}{l}\begin{cases}x=\dfrac{15}{7}\\y=\dfrac{17}{10}\end{cases}\\\begin{cases}x=\dfrac{15}{7}\\y=\dfrac{3}{10}\end{cases}\end{array} \right.\) 

Vậy hệ phương trình có nghiệm `(x,y)=(15/7,17/10),(15/7,3/10)`

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NN
Xem chi tiết
TL
Xem chi tiết
TP
Xem chi tiết
3P
Xem chi tiết
DV
Xem chi tiết
NA
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết