Bài 6: Ôn tập chương Đường thẳng và mặt phẳng trong không gian. Quan hệ song song.

BU

Giải giúp em các câu hỏi này với ạ.Mai em thi HKI rồi nên cần gấp

undefinedundefinedundefined

NL
27 tháng 12 2020 lúc 16:47

1.

Để ý rằng \(\dfrac{36}{4}=9\) nên 4 đỉnh tạo thành hình vuông khi chúng lần lượt cách nhau 9 đỉnh

Do đó ta có các bộ (1;10;19;28), (2;11;20;29),... (9; 18; 27, 36), tổng cộng 9 bộ hay 9 hình vuông

Xác suất: \(P=\dfrac{9}{C_{36}^4}=...\)

2.

Trong mp (ABCD), nối BM kéo dài cắt AD tại E

\(\Rightarrow SE=\left(SAD\right)\cap\left(SBM\right)\)

b. Gọi N là trung điểm SC \(\Rightarrow\dfrac{DG}{DN}=\dfrac{2}{3}\) (t/c trọng tâm)

Do \(AD||BC\) , áp dụng Talet:

\(\dfrac{IB}{ID}=\dfrac{BC}{AD}=\dfrac{1}{2}\Rightarrow\dfrac{IB}{ID}=\dfrac{1}{2}\Rightarrow\dfrac{ID}{BD}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{DG}{DN}=\dfrac{ID}{IB}\Rightarrow IG||BN\Rightarrow IG||\left(SBC\right)\)

c. Trong mp (SAD), nối QE cắt SD tại P

Talet: \(\dfrac{BC}{DE}=\dfrac{MC}{MD}=1\Rightarrow BC=DE\Rightarrow DE=\dfrac{1}{3}AE\)

Áp dụng Menelaus cho tam giác SAE:

\(\dfrac{QS}{QA}.\dfrac{AE}{ED}.\dfrac{DP}{PS}=1\) \(\Leftrightarrow1.3.\dfrac{DP}{PS}=1\Leftrightarrow SP=3DP\)

\(\Rightarrow\dfrac{SP}{SD}=\dfrac{3}{4}\)

Bình luận (0)
NL
27 tháng 12 2020 lúc 17:00

3.

\(2sinx.cosx-4sinx+mcosx-2m=0\)

\(\Leftrightarrow2sinx\left(cosx-2\right)+m\left(cosx-2\right)=0\)

\(\Leftrightarrow\left(2sinx+m\right)\left(cosx-2\right)=0\)

\(\Leftrightarrow sinx=-\dfrac{m}{2}\)

Phương trình có nghiệm khi và chỉ khi:

\(-1\le-\dfrac{m}{2}\le1\Leftrightarrow-2\le m\le2\)

4.

\(cot\dfrac{A}{2}+cot\dfrac{C}{2}=2cot\dfrac{B}{2}\Leftrightarrow\dfrac{cos\dfrac{A}{2}}{sin\dfrac{A}{2}}+\dfrac{cos\dfrac{C}{2}}{sin\dfrac{C}{2}}=\dfrac{2cos\dfrac{B}{2}}{sin\dfrac{B}{2}}\)

\(\Leftrightarrow\dfrac{cos\dfrac{A}{2}sin\dfrac{C}{2}+cos\dfrac{C}{2}sin\dfrac{A}{2}}{sin\dfrac{A}{2}sin\dfrac{C}{2}}=\dfrac{2cos\dfrac{B}{2}}{sin\dfrac{B}{2}}\)

\(\Leftrightarrow\dfrac{sin\left(\dfrac{A+C}{2}\right)}{sin\dfrac{A}{2}sin\dfrac{C}{2}}=\dfrac{2cos\dfrac{B}{2}}{sin\dfrac{B}{2}}\Leftrightarrow\dfrac{cos\dfrac{B}{2}}{sin\dfrac{A}{2}sin\dfrac{C}{2}}=\dfrac{2cos\dfrac{B}{2}}{sin\dfrac{B}{2}}\)

\(\Leftrightarrow sin\dfrac{B}{2}=2sin\dfrac{A}{2}sin\dfrac{C}{2}\)

\(\Leftrightarrow sin\dfrac{B}{2}=cos\left(\dfrac{A-C}{2}\right)-cos\left(\dfrac{A+C}{2}\right)\)

\(\Leftrightarrow sin\dfrac{B}{2}=cos\left(\dfrac{A-C}{2}\right)-sin\dfrac{B}{2}\)

\(\Leftrightarrow2sin\dfrac{B}{2}=cos\left(\dfrac{A-C}{2}\right)\Leftrightarrow2sin\dfrac{B}{2}cos\dfrac{B}{2}=cos\dfrac{B}{2}.cos\left(\dfrac{A-C}{2}\right)\)

\(\Leftrightarrow2sinB=cos\left(\dfrac{A+B-C}{2}\right)+cos\left(\dfrac{B+C-A}{2}\right)\)

\(\Leftrightarrow2sinB=sinC+sinA\)

\(\Leftrightarrow\dfrac{2b}{R}=\dfrac{c}{R}+\dfrac{a}{R}\Leftrightarrow2b=a+c\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NN
Xem chi tiết