Bài 2: Phương trình lượng giác cơ bản

JE

giải các pt

a) \(\frac{1}{sin^2x}=cotx+3\)

b) \(\frac{\sqrt{3}}{sin^2x}=3cotx+\sqrt{3}\)

c) \(9-13cosx+\frac{4}{1+tan^2x}=0\)

d) \(2tan^2x+3=\frac{3}{cosx}\)

NL
24 tháng 7 2020 lúc 18:03

a/

ĐKXĐ: ..

\(\Leftrightarrow1+cot^2x=cotx+3\)

\(\Leftrightarrow cot^2x-cotx-2=0\)

\(\Rightarrow\left[{}\begin{matrix}cotx=-1\\cotx=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot\left(2\right)+k\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow\sqrt{3}\left(1+cot^2x\right)=3cotx+\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}cot^2x-3cotx=0\)

\(\Rightarrow\left[{}\begin{matrix}cotx=0\\cotx=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
24 tháng 7 2020 lúc 18:05

c/

ĐKXĐ: ...

\(\Leftrightarrow9-13cosx+4.cos^2x=0\)

\(\Leftrightarrow\left(cosx-1\right)\left(4cosx-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

d/

\(\Leftrightarrow2\left(tan^2x+1\right)+1=\frac{3}{cosx}\)

\(\Leftrightarrow\frac{2}{cos^2x}-\frac{3}{cosx}+1=0\)

\(\Leftrightarrow\left(\frac{1}{cosx}-1\right)\left(\frac{2}{cosx}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{2}{cosx}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
TM
Xem chi tiết
TN
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết