Phương trình chứa căn

TN

giải các phương trình sau

a)\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)

b)\(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)

c)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)

d)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)

H24
8 tháng 11 2017 lúc 15:13

a) \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)

Đặt \(\sqrt{x^2-3x+3}=a;\sqrt{x^2-3x+6}=b\left(a;b>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\b^2-a^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(b+a\right)\left(b-a\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=3\\b-a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=1\end{matrix}\right.\) (nhận)

\(\Rightarrow\sqrt{x^2-3x+3}=1\)

\(\Leftrightarrow x^2-3x+3=1\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) (nhận)

b) \(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)

Đặt \(\sqrt{3-x+x^2}=a;\sqrt{2+x-x^2}=b\left(a;b>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=1\\a^2+b^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\\left(b^2+2b+1\right)+b^2-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2\left(b-1\right)\left(b+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) (vì \(b+2>0\)) (nhận)

\(\Rightarrow\sqrt{2+x-x^2}=1\)

\(\Leftrightarrow2+x-x^2=1\)

\(\Leftrightarrow x^2-x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\) (nhận)

Bình luận (0)
H24
8 tháng 11 2017 lúc 15:25

d) \(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)

\(\Leftrightarrow2\left(x+\dfrac{1}{4x}\right)+4=5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)\)

\(\Leftrightarrow2\left[\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-1\right]-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+4=0\)

\(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+2=0\)

Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)

\(\Rightarrow2a^2-5a+2=0\)

\(\Leftrightarrow\left(a-2\right)\left(2a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(\text{nhận}\right)\\a=\dfrac{1}{2}\left(\text{loại}\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{2+\sqrt{2}}{2}\\\sqrt{x}=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\) (nhận)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\) (nhận)

Bình luận (0)
CC
29 tháng 5 2018 lúc 9:47

c)DK:\(x\ge1\)

\(\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{x+3}{2}\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=\dfrac{x+3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x-1}+1+\sqrt{x-1}-1=\dfrac{x+3}{2}\\x\ge2\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x-1}+1+1-\sqrt{x-1}=\dfrac{x+3}{2}\\1\le x\le2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NA
Xem chi tiết
TD
Xem chi tiết
IH
Xem chi tiết
DH
Xem chi tiết
RT
Xem chi tiết
TS
Xem chi tiết
NH
Xem chi tiết
BT
Xem chi tiết