Bài 1:
a, TH1: 3x2 = 0
<=> x2 = 0
<=> x= 0
TH2: 5-x =0
<=> -x = -5
<=> x= 5
Vậy S={0;5}
b, \(\frac{2x-5}{x-4}\)= \(\frac{2x+1}{x+2}\) ĐKXĐ: x≠ 4; -2
<=> \(\frac{\left(2x-5\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}\)= \(\frac{\left(2x+1\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}\)
<=> (2x-5)(x+2) = (2x+1)(x-4)
<=> 2x2 + 4x - 5x - 10 = 2x2 - 8x + x - 4
<=> 2x2 - 2x2 + 4x - 5x + 8x - x = -4+10
<=> 6x = 6
<=> x= 1
Vậy S= {1}
Bài 2:
( 3x + 1)2 ≥ 9x2 - 5
⇔ 9x2 + 6x + 1 ≥ 9x2 - 5
⇔ 9x2 - 9x2 + 6x ≥ -1-5
⇔ 6x ≥ -6
⇔ x ≥ -1