Tra bảng ta được :
a) \(x\approx2,25\) (thực ra \(2,25\) là giá trị đúng)
b) \(x\approx4,623\)
c) \(x\approx0,2704\)
d) \(x\approx0,001444\)
Tra bảng ta được :
a) \(x\approx2,25\) (thực ra \(2,25\) là giá trị đúng)
b) \(x\approx4,623\)
c) \(x\approx0,2704\)
d) \(x\approx0,001444\)
a) \(\sqrt{x}=1,5\)
b) \(\sqrt{x}=2,15\)
c) \(\sqrt{x}=0,52\)
d) \(\sqrt{x}=0,038\)
Kiểm tra kết quả bài 47 bằng máy tính bỏ túi
a) \(x^2=15\)
b) \(x^2=22,8\)
c) \(x^2=351\)
d) \(x^2=0,46\)
Kiểm tra kết quả bài 48 bằng máy tính bỏ túia) \(\sqrt{x}=1,5\)
b) \(\sqrt{x}=2,15\)
c) \(\sqrt{x}=0,52\)
d) \(\sqrt{x}=0,038\)
1CHO A=x + \(\sqrt{5}\) và B=a - \(\sqrt{5}\)
Tính giá trị biểu thức P=a + b - ab
2Rút gọn biểu thức
B= \(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)-\dfrac{x+2\sqrt{x}}{\sqrt{x}}\) (với x>0 và x\(\ne\)4
\(A=\left(\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}\right)+\dfrac{3\sqrt{x}}{x-1}vớix\ge0,x\ne1\)
B=\(\frac{x}{\sqrt{x}-1}\)-\(\frac{2x-\sqrt{x}}{x-\sqrt{x}}\)
a, rút gọn B
b, tính B khi x=3+\(\sqrt{8}\)
P= \((\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1})\cdot(\dfrac{1-x}{\sqrt{2}})^2\)
(Với x≥0;x≠1)
a)Rút Gọn P
b)Chứng Minh rằng nếu 0<x<1 thì p>0
cho biểu thức P = \(\left(\frac{2x}{x\sqrt{x}-x+\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)với x ≥ 0 và x ≠ 1
a) rút gọn P
b) Tìm x để P =\(\frac{-1}{7}_{ }\)
Tìm x biết
\(\sqrt{x-1}-\sqrt{x-2}=1\)
Cho M=\(\dfrac{(\sqrt{1+\sqrt{1-x^2})}(\sqrt{\left(1+x^2\right)}-\sqrt{\left(1-x^2\right)})}{2+\sqrt{1-x^2}}\)
Rút gọn M