Bài 1: Căn bậc hai

MH

đại số :

1)

a) cho a là 1 nghệm của pt \(\sqrt{2}x^2+x-1=0\) tính : \(\dfrac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)

b) cho x,y nguyên dương thỏa \(x^2+2y^2+2xy-2\left(x+2y\right)+1=0\) tính \(S=2016x^{2017}+2017y^{2016}\)

H24
4 tháng 4 2017 lúc 22:48

a) a là 1 nghiệm \(\Rightarrow\sqrt{2}a^2+a-1=0\Leftrightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)

\(\Rightarrow2a^4-2a+3=a^2-2a+1-2a+3=\left(a-2\right)^2\)

\(\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2}\left(a-2\right)+2a^2\)(1)

\(\sqrt{2}a^2+a-1=0\Rightarrow2a^2+\sqrt{2}a-\sqrt{2}=0\)

(1)= \(2a^2+\sqrt{2}a-2\sqrt{2}=-\sqrt{2}\)

...

Bình luận (2)
H24
4 tháng 4 2017 lúc 23:05

b) find nghiệm nguyên dương:

\(Pt\Leftrightarrow x^2+2y^2+2xy-2\left(x+2y\right)+1=0\)

\(\Leftrightarrow x^2+2x\left(y-1\right)+\left(2y^2-4y+1\right)=0\)\(\Delta'=\left(y-1\right)^2-\left(2y^2-4y+1\right)=-y^2+2y\ge0\)

\(\Leftrightarrow0\le y\le2\) kết hợp \(y\in N\)=> ....

Bình luận (0)

Các câu hỏi tương tự
YA
Xem chi tiết
ND
Xem chi tiết
AD
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
BT
Xem chi tiết
NH
Xem chi tiết