Violympic toán 9

CT

dạ mọi người giúp em bài Toán 8 này với ạ! Dạ em cảm ơn ạ

Cho a,b,c > 0 thỏa mãn abc = 1. Chứng minh

a) \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{a^2+c^2}{a+c}\ge\:3\)

b) \(\frac{1}{a+b^4+c^4}+\frac{1}{b+a^4+c^4}+\frac{1}{c+b^4+a^4}\le\:1\)

NL
14 tháng 9 2020 lúc 7:28

a/

\(VT\ge\frac{\frac{1}{2}\left(a+b\right)^2}{a+b}+\frac{\frac{1}{2}\left(b+c\right)^2}{b+c}+\frac{\frac{1}{2}\left(c+a\right)^2}{c+a}=a+b+c\ge3\sqrt[3]{abc}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ Ta có: \(x^4+y^4\ge\frac{1}{2}\left(x^2+y^2\right)\left(y^2+y^2\right)\ge xy\left(x^2+y^2\right)\)

\(\Rightarrow VT\le\frac{1}{a+bc\left(b^2+c^2\right)}+\frac{1}{b+ca\left(a^2+c^2\right)}+\frac{1}{c+ab\left(a^2+b^2\right)}\)

\(VT\le\frac{1}{a+\frac{1}{a}\left(b^2+c^2\right)}+\frac{1}{b+\frac{1}{b}\left(a^2+c^2\right)}+\frac{1}{c+\frac{1}{c}\left(a^2+b^2\right)}\)

\(VT\le\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}=\frac{a+b+c}{a^2+b^2+c^2}\)

\(VT\le\frac{a+b+c}{\frac{1}{3}\left(a+b+c\right)^2}=\frac{3}{a+b+c}\le\frac{3}{3\sqrt[3]{abc}}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
CT
Xem chi tiết
VH
Xem chi tiết
PA
Xem chi tiết
LQ
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
NH
Xem chi tiết
VD
Xem chi tiết