Violympic toán 9

CT

dạ mọi người giúp em bài Toán này với ạ! Dạ em cảm ơn ạ

Cho a,b,c > 0 thỏa mãn a + b + c = 3. Chứng minh

\(\frac{a^3}{\left(b+2\right)^2}+\frac{b^3}{\left(c+2\right)^2}+\frac{c^3}{\left(a+2\right)^2}\ge\:\frac{1}{3}\)

a3 + b3 + c3 ≥ a2 + b2 + c2

NL
21 tháng 8 2020 lúc 13:04

\(\frac{a^3}{\left(b+2\right)^2}+\frac{b+2}{27}+\frac{b+2}{27}\ge3\sqrt[3]{\frac{a^3\left(b+2\right)^2}{27^2.\left(b+2\right)^2}}=\frac{a}{3}\)

Tương tự: \(\frac{b^3}{\left(c+2\right)^2}+\frac{c+2}{27}+\frac{c+2}{27}\ge\frac{b}{3}\) ; \(\frac{c^3}{\left(a+2\right)^2}+\frac{a+2}{27}+\frac{a+2}{27}\ge\frac{c}{3}\)

Cộng vế với vế:

\(VT+\frac{2\left(a+b+c\right)+12}{27}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow VT+\frac{2}{3}\ge1\Leftrightarrow VT\ge\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
NL
21 tháng 8 2020 lúc 13:07

b/

\(a^3+a^3+1\ge3\sqrt[3]{a^6}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

Cộng vế với vế:

\(2\left(a^3+b^3+c^3\right)\ge3\left(a^2+b^2+c^2\right)-3\)

Mặt khác ta lại có:

\(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge2\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2\right)-3\ge2\left(a^2+b^2+c^2\right)+3-3\)

\(\Leftrightarrow a^3+b^3+c^3\ge a^2+b^2+c^2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
CT
21 tháng 8 2020 lúc 13:12

Dạ em cảm ơn ạ

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
KN
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
NH
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết