Violympic toán 9

PA

Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh rằng:

\(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Mọi người giúp mình câu này nha.Cảm ơn nhiều!

NL
1 tháng 6 2020 lúc 13:04

\(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{3b+c}\le\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)

Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{b}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
VD
Xem chi tiết
NP
Xem chi tiết
LQ
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết