Giải các bất phương trình sau:
a) \(\frac{3}{x}< \frac{1}{x}+\frac{2}{x+4}\)
b) \(\frac{x^2+x-3}{x^2-4}\ge1\)
c) \(\frac{3}{2x-1}\ge-\frac{1}{x+2}\)
d) \(\frac{2x-1}{3x+2}\le\frac{3x+2}{2x-1}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:
C=2x+x2-x4
D=\(\sqrt{\left(2x+3\right)\left(5-3x\right)}\) với (-\(\frac{3}{2}\)≤x≤\(\frac{5}{3}\))
1. Giải các bất phương trình sau :
a, (2x2 - 6x - 8 )(-x2 - x + 12 ) < 0
b, ( 1 - 2x )(x2 + x - 30 )(x2 - 4x + 4 ) \(\le\) 0
c, \(\frac{2x^2-5x+2}{x^2+7x+12}\ge0\)
d, \(\frac{2x^2-7x-7}{x^2-3x-10}\le1\)
e, \(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
f, \(\frac{2}{x^2-x+1}-\frac{1}{x+1}\ge\frac{2x-1}{x^3+1}\)
\(\frac{ }{ }\)với x thỏa mãn đk nào dưới đây thì biểu thức f(x)= 2x+ 3/2x-4 -(3+ 3/2x-4) luôn dương
A: x>3/2 và x≠2
B: x>3/2
C: x<3/2
D: 2x<3
Bài 4 Xét dấu biểu thức sau
1 , \(f\left(x\right)=x^2-3x-2-\frac{8}{x^2-3x}\)
2 , \(f\left(x\right)=\frac{1}{x+1}-\frac{1}{x}-\frac{1}{2}\)
3 , \(f\left(x\right)=\frac{x^2-4x+3}{3-2x}-1+x\)
4 , \(f\left(x\right)=\frac{x^2-1}{\left(x^2-3\right)\left(-3x^2+2x+8\right)}\)
5 , \(f\left(x\right)=x^4-5x^2+2x+3\)
6 , \(f\left(x\right)=\frac{x^2+4x+15}{x^2-1}-\frac{x-3}{x+1}-\frac{x-2}{1-x}\)
Bài 1: Tìm tập nghiệm của phương trình và bất phương trình
a) \(\frac{x^2+2x+8}{|x+1|}< 0\)
b) \(\frac{2x^2-3x+1}{|4x-3|}< 0\)
c) \(|x^2-x-12|>x+12-x^2\)
d) \(|x^2-5x+6|=x^2-5x+6\)
e) \(\frac{|x^2-8x+12|}{\sqrt{5-x}}>\frac{x^2-8x+12}{\sqrt{5-x}}\)
f) \(\frac{|x^2-7x+10|}{\sqrt{x-3}}=\frac{x^2-7x+10}{\sqrt{x-3}}\)
g) \(\frac{1}{x-3}\ge\frac{1}{x+3}\)
h) \(\frac{2x^2-3x+4}{x^2+2}>1\)
Bài 2: Tìm tập xác định của hàm số
a) y =\(\sqrt{\frac{2}{x^2+5x+6}}\)
b) y = \(\sqrt{x^2+x+2}+\frac{1}{2x-3}\)
c) y = \(\sqrt{\frac{x^2-1}{1-x}}\)
1) \(\frac{x^2+2x+5}{x+4}\ge x-3\)
2) \(\frac{x^2-3x-1}{2-x}>-x\)
3) \(\frac{3x-47}{3x-1}>\frac{4x-47}{2x-1}\)
4) \(x+\frac{9}{x+2}\ge4\)
5) \(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\)
6) \(x^4\ge\left(x^2+4x+2\right)^27x^2-7x+10< 0\)
1. Giải các phương trình sau :
a, \(\frac{x^2-4x+4}{x^2-2x+1}+\frac{\left|2x-4\right|}{\left|x-1\right|}-3=0\)
b, \(\left|x^2-5\right|x\left|+4\right|=\left|2x^2-3\right|x\left|+1\right|\)
Giải các bất phương trình sau:
a) \(\sqrt{2-|x-2|}>x-2\)
b) \(x^2+3x+2\geq 2\sqrt{x^2+3x+5}\)
c) \(4\sqrt{x}+\frac{2}{\sqrt{x}}<2x+\frac{1}{2x}+2\)