§5. Dấu của tam thức bậc hai

NL

Bài 4 Xét dấu biểu thức sau

1 , \(f\left(x\right)=x^2-3x-2-\frac{8}{x^2-3x}\)

2 , \(f\left(x\right)=\frac{1}{x+1}-\frac{1}{x}-\frac{1}{2}\)

3 , \(f\left(x\right)=\frac{x^2-4x+3}{3-2x}-1+x\)

4 , \(f\left(x\right)=\frac{x^2-1}{\left(x^2-3\right)\left(-3x^2+2x+8\right)}\)

5 , \(f\left(x\right)=x^4-5x^2+2x+3\)

6 , \(f\left(x\right)=\frac{x^2+4x+15}{x^2-1}-\frac{x-3}{x+1}-\frac{x-2}{1-x}\)

NL
14 tháng 3 2020 lúc 22:30

1.

\(f\left(x\right)=\frac{\left(x^2-3x\right)^2-2\left(x^2-3x\right)-8}{x^2-3x}=\frac{\left(x^2-3x-4\right)\left(x^2-3x+2\right)}{x^2-3x}\)

\(f\left(x\right)=\frac{\left(x+1\right)\left(x-1\right)\left(x-2\right)\left(x-4\right)}{x\left(x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{0;3\right\}\)

\(f\left(x\right)=0\Rightarrow x=\left\{-1;1;2;4\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -1\\0< x< 1\\2< x< 3\\x>4\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}-1< x< 0\\1< x< 2\\3< x< 4\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{2x-2\left(x+1\right)-x\left(x+1\right)}{2x\left(x+1\right)}=\frac{-x^2-x-2}{2x\left(x+1\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{-1;0\right\}\)

\(f\left(x\right)>0\Rightarrow-1< x< 0\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -1\\x>0\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
14 tháng 3 2020 lúc 22:37

3.

\(f\left(x\right)=\frac{x^2-4x+3+\left(x-1\right)\left(3-2x\right)}{3-2x}=\frac{-x^2+x}{3-2x}=\frac{x\left(1-x\right)}{3-2x}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\frac{3}{2}\)

\(f\left(x\right)=0\Rightarrow x=\left\{0;1\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}0< x< 1\\x>\frac{3}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< 0\\1< x< \frac{3}{2}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(2-x\right)\left(3x+4\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\pm\sqrt{3};-\frac{4}{3};2\right\}\)

\(f\left(x\right)=0\Rightarrow x=\pm1\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}-\sqrt{3}< x< -\frac{4}{3}\\-1< x< 1\\\sqrt{3}< x< 2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -\sqrt{3}\\-\frac{4}{3}< x< -1\\1< x< \sqrt{3}\\x>2\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
14 tháng 3 2020 lúc 22:50

5.

\(f\left(x\right)=x^4-x^3-x^2+x^3-x^2-x-3x^2+3x+3\)

\(=x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)-3\left(x^2-x-1\right)\)

\(=\left(x^2+x-3\right)\left(x^2-x-1\right)\)

Vậy:

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=\frac{-1\pm\sqrt{13}}{2}\\x=\frac{1\pm\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< \frac{-1-\sqrt{13}}{2}\\\frac{1-\sqrt{5}}{2}< x< \frac{1+\sqrt{5}}{2}\\x>\frac{-1+\sqrt{13}}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}\frac{-1-\sqrt{13}}{2}< x< \frac{1-\sqrt{5}}{2}\\\frac{1+\sqrt{5}}{2}< x< \frac{-1+\sqrt{13}}{2}\end{matrix}\right.\)

6.

\(f\left(x\right)=\frac{x^2+4x+15-\left(x-3\right)\left(x-1\right)+\left(x-2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x^2+7x+10}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x+5\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\pm1\)

\(f\left(x\right)=0\Rightarrow x=\left\{-2;-5\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -5\\-2< x< -1\\x>1\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}-5< x< -2\\-1< x< 1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
NL
Xem chi tiết
HH
Xem chi tiết
AV
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết
AV
Xem chi tiết
NL
Xem chi tiết