(a + b)(a - b)
= a(a + b) - b(a + b)
= a2 + ab - ba - b2
= a2 - b2
\(\left(a+b\right).\left(a-b\right)\)
\(=a^2+ab-ba-b^2\)
\(=a^2-b^2\)
\(a^2+b^2\)
\(=a^2+ab-ab-b^2\)
\(=\left(a-b\right)\left(a+b\right)\)
Ta có:
A2-B2=(A+B).(A-B)
= A2+AB-BA-B2
=A2-B2
Vậy A2-B2=(A-B).(A+B) (đfcm)
Giải
Ta có : \(\left(A+B\right)\left(A-B\right)\)
\(=A\left(A+B\right)-B\left(A+B\right)\)
\(=A^2+AB-AB-B^2\)
\(=A^2+0-B^2\)
\(=A^2-B^2\)
Vì \(A^2-B^2=A^2-B^2\)nên \(A^2-B^2=\left(A+B\right)\left(A-B\right)\left[đpcm\right]\)