Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
⇔\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
⇔\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{zy}+\frac{1}{xz}\right)=4\)
⇔\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}=4\)
⇔\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2xyz}{xyz}=4\)
⇔\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=4\)
⇔\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=2\)(đpcm)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=2\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}=2\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2xyz}{xyz}=2\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=2\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=0\)
=> Đề có vấn đề rồi bạn