HQ

Chứng tỏ \(y=f\left(x\right)=x^2-4x+3\) nghịch biến trong khoảng \(\left(-\infty;2\right)\) và đồng biến trong khoảng \(\left(2;+\infty\right)\)

NT
4 tháng 2 2022 lúc 13:37

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-4x_1+3-x_2^2+4x_2-3}{x_1-x_2}\)

\(=\dfrac{\left(x_1+x_2\right)\left(x_1-x_2\right)-4\left(x_1-x_2\right)}{x_1-x_2}=\left(x_1+x_2\right)-4\)

Khi \(x\in\left(-\infty;2\right)\) nên \(\left(x_1+x_2\right)-4< 2+2-4=0\)

=>Hàm số nghịch biến khi x<2

Khi \(x\in\left(2;+\infty\right)\) nên \(\left(x_1+x_2\right)-4>2+2-4=0\)

=>Hàm số đồng biến khi x>2

Bình luận (0)

Các câu hỏi tương tự
CL
Xem chi tiết
MH
Xem chi tiết
MH
Xem chi tiết
TK
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
TD
Xem chi tiết
TA
Xem chi tiết
HA
Xem chi tiết