NA

Chứng minh:

a)  (2-\(\sqrt{3}\))(2+\(\sqrt{3}\))=1

b)  (\(\sqrt{2006}\) - \(\sqrt{2005}\) và (\(\sqrt{2006}\)+\(\sqrt{2005}\)) là hai số nghịch đảo của nhau

HN
12 tháng 8 2016 lúc 20:39

a) \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2^2-\left(\sqrt{3}\right)^2=4-3=1\)

b) Đặt \(x=\sqrt{2006}-\sqrt{2005},y=\sqrt{2006}+\sqrt{2005}\)

Ta có : \(\frac{1}{x}=\frac{1}{\sqrt{2006}-\sqrt{2005}}=\frac{\sqrt{2006}+\sqrt{2005}}{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}\)

\(=\sqrt{2006}+\sqrt{2005}=y\)

Vì \(y=\frac{1}{x}\) nên hai số này là nghịch đảo của nhau 

Bình luận (0)
OO
12 tháng 8 2016 lúc 20:52

a) xét      \(VT=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-\sqrt{3}^2=4-3=1\)

mà \(VT=1\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

b) (lí thuyết) :nếu 2 số nghịch đảo với nhau thì có tích bằng 1 và ngược lại,nếu 2 số có tích bằng 1 thì 2 số đó là nghịch đảo của nhau

Xét \(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)=2006-2005=1\) 

\(\Rightarrow\left(\sqrt{2006}-\sqrt{2005}\right)và\left(\sqrt{2006}+\sqrt{2005}\right)\)là 2 số nghịch đảo với nhau(đpcm)

NHỚ TICK CHO MÌNH NHA !!

MÌNH TRẢ LỜI ĐẦU TIÊN ĐẤY

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết
HV
Xem chi tiết
HX
Xem chi tiết
WR
Xem chi tiết
NO
Xem chi tiết
LY
Xem chi tiết