Bài 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC

QM

Chứng minh trong tam giác ABC:
a. b\(^2-c^2\) = a.(b.cosC - c.cosB)

b. \(\left(b^2-c^2\right)\)cosA = a. (c. cosC - b.cosB)

c. cotA + cotB + cotC = \(\dfrac{a^2+b^2+c^2}{abc}\). R

NL
31 tháng 1 2019 lúc 1:17

a/ \(b^2-c^2=ab.cosC-ac.cosB\)

Ta có: \(b.cosC-c.cosB=ab.\dfrac{a^2+b^2-c^2}{2ab}-ac.\dfrac{a^2+c^2-b^2}{2ac}\)

\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}=\dfrac{2b^2-2c^2}{2}=b^2-c^2\) (đpcm)

b/ \(ac.cosC-ab.cosB=ac.\dfrac{a^2+b^2-c^2}{2ab}-ab.\dfrac{a^2+c^2-b^2}{2ac}\)

\(=\dfrac{c^2\left(a^2+b^2-c^2\right)-b^2\left(a^2+c^2-b^2\right)}{2bc}=\dfrac{\left(ac\right)^2-\left(ab\right)^2+b^4-c^4}{2bc}\)

\(=\dfrac{-a^2\left(b^2-c^2\right)+\left(b^2-c^2\right)\left(b^2+c^2\right)}{2bc}=\left(b^2-c^2\right).\dfrac{\left(b^2+c^2-a^2\right)}{2bc}\)

\(=\left(b^2-c^2\right).cosA\) (đpcm)

c/ \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}=\dfrac{2R.cosA}{a}+\dfrac{2R.cosB}{b}+\dfrac{2R.cosC}{c}\)

\(=2R\left(\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\right)\)

\(=2R\left(\dfrac{a^2+b^2+c^2}{2abc}\right)=\dfrac{a^2+b^2+c^2}{abc}.R\) (đpcm)

Bình luận (1)

Các câu hỏi tương tự
LY
Xem chi tiết
OO
Xem chi tiết
NL
Xem chi tiết
AT
Xem chi tiết
TN
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết