DL

chứng minh rằng:

a) Trong một tam giác cân,hai đường trung tuyến ứng với hai cạnh bên là hai đoạn thẳng bằng nhau

b) Ngược lại,nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân

KR
16 tháng 2 2023 lúc 21:09

#\(N\)

`a,` `GT: AB = AC,` \(\widehat{B}=\widehat{C}\)

`CM: BB' = C``C'`

`BB'` là đường trung tuyến

`-> B'` là trung điểm của `AC`

`-> AB' = B'C` 

`C``C'` là đường trung tuyến

`-> C'` là trung điểm của `AB`

`-> AC' = C'B`

Tam giác `ABC` cân tại `A`

`-> AB = AC`

`-> AC' = AB' = C'B = B'C`

Xét Tam giác `BB'C` và Tam giác `C``C'B:`

`C'B = B'C`

\(\widehat{B}=\widehat{C}\)

`BC` chung

`=>` Tam giác `BB'C =` Tam giác `C``C'B (c-g-c)`

`=> BB' = C``C' (2` cạnh tương ứng `) (đpcm)`

`b, GT: AB' = B'C ; AC'=C'B ; C``C' = BB'`

`KL:` Tam giác `ABC` cân

`BB', C``C'` là đường trung tuyến

giả sử: `BB'` cắt `C``C'` tại `G`

`-> G` là trọng tâm của Tam giác `ABC`

`-> GB = 2/3 BB'`

`-> GC = 2/3 C``C'`

`BB' = C``C' -> GB = GC`

`->` Tam giác `GBC` cân tại `G`

`->`\(\widehat{B_1}=\widehat{C_1}\) 

Xét Tam giác `BB'C` và Tam giác `C``C'B` có:

`BB' = C``C'`

\(\widehat{B_1}=\widehat{C_1}\)

`BC` chung

`=>`Tam giác `BB'C =` Tam giác `C``C'B (c-g-c)`

`-> BC' = B'C`

`-> 1/2 AB = 1/2 AC`

`-> AB = AC`

`->` Tam giác `ABC` cân tại `A (đpcm)`.loading...

loading...

Bình luận (0)
DL
16 tháng 2 2023 lúc 20:23

giúp mình với

 

Bình luận (0)
NT
16 tháng 2 2023 lúc 20:24

a: ΔABC cân tại A có BM,CN là các trung tuyến

Xét ΔABM và ΔACN có

AB=AC
góc A chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

b: Gọi G là giao của BM và CN

=>G là trọng tâm của ΔABC

=>GB=2/3BM; GC=2/3CN

mà BM=CN

nên GB=GC

=>góc GBC=góc GCB

Xét ΔNBC và ΔMCB có

NC=MB

BC chung

góc NCB=góc MBC

=>ΔNBC=ΔMCB

=>góc ABC=góc ACB

=>ΔBAC cân tại A

Bình luận (1)

Các câu hỏi tương tự
NO
Xem chi tiết
LS
Xem chi tiết
NP
Xem chi tiết
PB
Xem chi tiết
PT
Xem chi tiết
PN
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết