PB

Chứng minh rằng với mọi số nguyên n, ta có:

  1.4 + 2.7 + ⋅ ⋅ ⋅ + n 3 n + 1 = n n + 1 2    (1)

CT
18 tháng 7 2018 lúc 13:35

* Với n =  1:

  Vế trái của (1) =  1.4 = 4;  vế phải của (1) = 1 . (   1 + 1 ) 2 = 4.

 Suy ra Vế trái của (1) = Vế phải của (1).  Vậy (1) đúng với n = 1.

* Giả sử (1) đúng với n= k. Có nghĩa là ta có:  1.4 + 2.7 + ⋅ ⋅ ⋅ + k 3 k + 1 = k k + 1 2   2

Ta phải chứng minh (1) đúng với n = k + 1. Có nghĩa ta phải chứng minh:

1.4 + 2.7 + ⋅ ⋅ ⋅ + k 3 k + 1 + k + 1 3 k + 4 = k + 1 k + 2 2

Thật vậy 1.4 + 2.7 + ⋅ ⋅ ⋅ + k 3 k + 1 ⏟ = k k + 1 2 + k + 1 3 k + 4 = k k + 1 2 + k + 1 3 k + 4  

= ( k + 1 ) .   [ k . ( k + 1 ) ​    + ​ 3 k + ​    4 ] = ( k ​ + ​ 1 ) . ( k 2 + ​​​ 4 k + ​ 4 )    = k + 1 k + 2 2 (đpcm).

Vậy (1) đúng với n = k + 1. Do đó theo nguyên lí quy nạp, (1) đúng với mọi số nguyên dương n.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết