H24

Chứng minh rằng với mọi a, b, c > 0 thì \(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

NL
13 tháng 7 2022 lúc 22:37

Bunhiacopxki: \(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\)

\(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\ge\left(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}\right)^2\)

Nhân vế với vế:

\(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)^2\left(ab+bc+ca\right)\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(a+b+c\right)^2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Do: \(\left(ab+bc+ca\right)\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(ab+bc+ca\right)\left(\dfrac{a+b+c}{abc}\right)\)

\(=\left(\dfrac{ab+bc+ca}{abc}\right)\left(a+b+c\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\)

Bình luận (0)
H24
13 tháng 7 2022 lúc 22:44

\(\text{⇔}\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\ge3+\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)

Áp dụng bất đẳng thức AM-GM : 

\(\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\ge3\\ \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\)

Ta có :

\(\dfrac{a^2}{b^2}+1\ge\dfrac{2a}{b}\\ \dfrac{b^2}{c^2}+1\ge\dfrac{2b}{c}\\ \dfrac{c^2}{a^2}+1\ge\dfrac{2c}{a}\)

Ta có : 

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+3\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+3\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+3\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)

Suy ra : 

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\ge3+\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)

Bình luận (0)

Các câu hỏi tương tự
LS
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
LH
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết