Helppppppppppppppppppp
Cho a,b,c là các số thực dương thoả mãn a +b + c <1 . Chứng minh rằng \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+\left(a+b\right)}+\dfrac{1}{bc+\left(b+c\right)}+\dfrac{1}{ca+\left(c+a\right)}< \dfrac{87}{2}\)
Cho ba số thực dương a,b,c thỏa mãn . Chứng mình rằng:
\(\left(a+b+c\right)+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+\dfrac{8}{abc}\ge\dfrac{121}{12}\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR: \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}>=4\)
Cho a, b, c là các số dương biết abc = 1. Chứng minh rằng: \(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}\ge\dfrac{1}{2}\)
cho a,b,c là các số thực dương thoả mãn \(b=\dfrac{c+a}{2}\).
Tính giá trị của biểu thức \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right).\left(\sqrt{a}+\sqrt{c}\right)\)
Cho a,b,c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng:\(\dfrac{a+b}{\sqrt{a}+\sqrt{b}}+\dfrac{b+c}{\sqrt{b}+\sqrt{c}}+\dfrac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\dfrac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\dfrac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right)\)
1, Giả sử a,b,c là các số thực khác 0 thỏa mãn (a+b)(b+c)(c+a)=8abc
CMR: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ca}{\left(c+a\right)\left(a+b\right)}\)
2,Cho đường tròn tâm O bán kính R=6cm và 1 điểm A cách O 1 khoảng 10cm. Từ A vẽ tiếp tuyến AB (B là tiếp điểm). Vẽ cát tuyến ACD, gọi I là trung điểm của đoạn CD. Hỏi khi chạy trên đường tròn thì I chạy trên đường nào?
Cho các số dương a,b,c cs abc=1 Chứng minh rằng
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
Cho các số thực dương a,b,c thay đổi thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
Tìm GTLN của P=\(\dfrac{1}{\left(2a+b+c\right)^2}+\dfrac{1}{\left(2b+c+a\right)^2}+\dfrac{1}{\left(2c+a+b\right)^2}\)