với mọi giá trị thực của tham số m, chứng minh phương trình x5+x2-(m2+2)x-1=0 luôn có ít nhất 3 nghiệm thực
Chứng minh rằng phương trình sau luôn có nghiệm : \(x^4+mx^2-2mx-2=0\forall m\)
Chứng minh rằng phương trình : \(x^3-3x+1=0\) có ba nghiệm phân biệt khoảng \(\left(-2,2\right)\)
Cho hàm số \(y=f\left(x\right)\) xác định trên khoảng \(\left(a;+\infty\right)\)
Chứng minh rằng nếu \(\lim\limits_{x\rightarrow+\infty}=-\infty\) thì luôn tồn tại ít nhất một số c thuộc \(\left(a;+\infty\right)\) sao cho \(f\left(c\right)< 0\)
Cho f(x) thỏa mãn : \(_{\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5}\)
Tính I= \(\lim\limits_{x\rightarrow-1}\dfrac{\left(4f\left(x\right)+3\right)\left(\sqrt{4f\left(x\right)^2+2f\left(x\right)+4}\right)-2}{x^2-1}\)
a. \(\lim\limits_{x\rightarrow a}\frac{x\sqrt{x}-a\sqrt{a}}{\sqrt{x}-\sqrt{a}}\) e. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}\)
b. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}\left(m,n\in Z^+\right)\) f. \(\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
c. \(\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)\left(1-\sqrt[4]{x}\right)\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)^4}\) g. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{3x-2}-\sqrt{2x-1}}{x^3-1}\)
d. \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)\) h. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+9}+\sqrt[3]{2x-6}}{x^3+1}\)
Cho hai hàm số \(y=f\left(x\right)\) và \(y=g\left(x\right)\) cùng xác định trên khoảng \(\left(-\infty;a\right)\). Dùng định nghĩa chứng minh rằng nếu \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=L\) và \(\lim\limits_{x\rightarrow-\infty}g\left(x\right)=M\) thì \(\lim\limits_{x\rightarrow-\infty}f\left(x\right).g\left(x\right)=L.M\)
Tìm các giới hạn sau:
C=\(\lim\limits_{x\rightarrow0}\frac{\left(3x+1\right)^3-\left(1-4x\right)^4}{x}\)
D=\(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)\left(1+2x\right)\left(1+3x\right)-1}{x}\)
Tính các giới hạn sau:
Câu 1:
a, limx→\(\pm\)∞ \(\dfrac{\left(2x-3\right)^2\left(4x+7\right)^3}{\left(3x-4\right)^2\left(5x^2-1\right)}\)
b, limx→\(\pm\)∞ \(\dfrac{\sqrt[3]{x^3+2x^2+x}}{2x-2}\)
c, limx→\(\pm\)∞ \(\dfrac{\sqrt[3]{\left(x^3+2x^2\right)^2}+x^3\sqrt{x^3+2x^2}+x^2}{3x^2-2x}\)
d, limx→+∞ \(\dfrac{\left(2-3x\right)^3\left(x+1\right)^2}{1-4x^5}\)
e, limx→+∞ \(\dfrac{\left(2x-3\right)^{20}\left(3x+2\right)^{20}}{\left(2x+1\right)^{50}}\)
g, limx→+∞ \(\dfrac{\left(2x-3\right)^3\left(4x^5+7\right)^9}{11x^{47}-8}\)