Cho tứ diện ABCD có ba cặp cạnh đối diện bằng nhau là AB = CD, AC = BD, AD = BC. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh \(MN\perp AB\) và \(MN\perp CD\). Mặt phẳng (CD) có vuông góc với mặt phẳng (ABN) không ? Vì sao ?
Cho hình chóp S.ABCD có \(SA\perp\left(ABCD\right)\), đáy ABCD là hình vuông cạnh 2a, SA= \(2a\sqrt{3}\) .
1. Chứng minh \(\left(SAC\right)\perp\left(SBD\right)\)
2. Gọi I là trung điểm của AD, mặt phẳng (P) qua I và vuông góc với SD. Xác định và tính thiết diện của hình chóp cắt bởi mặt phẳng (P).
Help me!!!
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a; BC = b; CC'=c
a) Chứng minh rằng mặt phẳng (ADC'B') vuông góc với mặt phẳng (ABB'A')
b) Tính độ dài đường chéo AC' theo a, b, c
Tứ diện SABC có ba đỉnh A, B, C tạo thành tam giác vuông cân đỉnh B và AC = 2a, có cạnh SA vuông góc với mặt phẳng (ABC) và SA = a
a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (SBC)
b) Trong mặt phẳng (SAB) vẽ AH vuông góc với SB tại H, chứng minh \(AH\perp\left(SBC\right)\)
c) Tính độ dài đoạn AH
d) Từ trung điểm O của đoạn AC vẽ OK vuông góc với (SBC) cắt (SBC) tại K. Tính độ dài đoạn OK ?
Tứ diện S.ABC có SA vuông góc với mặt phửng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng :
a) AH, SK và BC đồng quy
b) SC vuông góc với mặt phẳng (BHK) và \(\left(SAC\right)\perp\left(BHK\right)\)
c) HK vuông góc với mặt phẳng (SBC) và \(\left(SBC\right)\perp\left(BHK\right)\)
Cho lập phương ABCD.A'B'C'D'. Chứng minh rằng :
a) Mặt phẳng (AB'C'D) vuông góc với mặt phẳng (BCD'A')
b) Đường thẳng AC' vuông góc với mặt phẳng (A'BD)
Cho S.ABCD có đáy là hình vuông ABCD cạnh a và SA \(\perp\) (ABCD), SA=a.
Tính góc giữa hai mặt phẳng (SCD) và (SBC) .
a) Cho hình lập phương ABCD. A'B'C'D' cạnh a. Chứng minh rằng đường thẳng AC' vuông góc với mặt phẳng (A'BD) và mặt phẳng (ACC'A') vuông góc với mặt phẳng (A'BD)
b) Tính đường chéo AC' của hình lập phương đã cho