Ôn tập: Phương trình bâc nhất một ẩn

TS

chứng minh rằng : nếu \(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\) thì a2b2c2=1 hay a=b=c

DH
19 tháng 2 2018 lúc 19:37

\(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)

\(\Rightarrow a-b=\dfrac{1}{c}-\dfrac{1}{b}=\dfrac{b-c}{bc}\)(1)

\(\Rightarrow b-c=\dfrac{1}{a}-\dfrac{1}{c}=\dfrac{c-a}{ac}\)(2)

\(\Rightarrow c-a=\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)(3)

Nhân vế theo vế của (1);(2);(3) ta được :

\(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(abc\right)^2}\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)-\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(abc\right)^2}=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[1-\dfrac{1}{a^2b^2c^2}\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b=c\\a^2b^2c^2=1\end{matrix}\right.\)(đpcm)

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
DL
Xem chi tiết
NH
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
NY
Xem chi tiết