\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=>(a+b)(c-d)=(a-b)(c+d)
=>ac-ad+bc-bd=ac+ad-bc-bd
=>-ad+bc=ad-bc
=>-2ad=-2bc
=>ad=bc
=>a/b=c/d
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=>(a+b)(c-d)=(a-b)(c+d)
=>ac-ad+bc-bd=ac+ad-bc-bd
=>-ad+bc=ad-bc
=>-2ad=-2bc
=>ad=bc
=>a/b=c/d
Chứng minh rằng \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) nếu:
a, \(\dfrac{a}{c}\) = \(\dfrac{a+b}{c+d}\)
b, \(\dfrac{b}{d}\) = \(\dfrac{a-b}{c-d}\)
19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Chứng minh rằng a/b+c + b/c+d +c/d+a +d/a+b > 2
Cho \(\dfrac{a+b}{b+c}\)=\(\dfrac{c+d}{d+a}\) Chứng minh rằng a=c hoặc a+b+c+d=0
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
1.cho a,b,c là các số dương lớn hơn 1.Chứng minh a^2/(b-1)+b^2/(c-1)+c^2/(a-1)>=12
2.Cho các số tự nhiên a,b,c,d. Chứng minh rằng M=a/(a+b+c)+b/(b+c+d)+c/(c+d+a)+d/(d+a+b) không là số tự nhiên
Chứng minh rằng a^2+b^2+c^2+d^2+a(b+c)+b(c+d)+d(c+a) lớn hơn hoặc bằng 10
cho a / b = c/ d (a,b,c,d khác 0 ; a khác b ; c khác d ) Chứng Minh rằng
a. a + b /b = c + d / d
b. a / a - b = c / d - c
Cho \(\frac{a-b}{b-c}=\frac{c-d}{d-a}\). Chứng minh rằng : a = c hoặc a+c = b+d