Chứng minh rằng \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) nếu:
a, \(\dfrac{a}{c}\) = \(\dfrac{a+b}{c+d}\)
b, \(\dfrac{b}{d}\) = \(\dfrac{a-b}{c-d}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh:
1) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
2) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
cho a,b,c,d lớn hơn 0
chứng minh rằng :a-d/d+b + d-b/b+c + b-c/c+a + c-a/a+d lớn hơn hoặc bằng 0
cho bốn số a,b,c,d khác 0 thỏa mãn: a+b=c+d và a^2+b^2=c^2+d^2.Chứng minh rằng: a=c hoặc a=d
chứng minh nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)
cho a,b,c >0 thỏa a≥b≥c. Chứng minh rằng \(\dfrac{a}{b}\)+\(\dfrac{b}{c}\)+\(\dfrac{c}{a}\)≥3
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
Cho tỉ lệ thức \(\dfrac{a+b+c}{a+b-c}\) = \(\dfrac{a-b+c}{a-b-c}\) với b≠0
Chứng minh rằng: c=0