YT

Chứng minh rằng: A = \(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)không phụ thuộc vào x;y với x > 0 và y > 0          

            Các bạn lm chi tiết giúp mk nhé!

NM
15 tháng 10 2021 lúc 21:31

\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)

Đề sai

Bình luận (0)
NT
15 tháng 10 2021 lúc 21:35

\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)

\(=2\sqrt{x}\)

Bình luận (0)

Các câu hỏi tương tự
YT
Xem chi tiết
NQ
Xem chi tiết
NQ
Xem chi tiết
BB
Xem chi tiết
PM
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
L2
Xem chi tiết
QN
Xem chi tiết