NQ

Chứng minh rằng biểu thức sau không phụ thuộc vào biến

A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)

B = \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)

H24
22 tháng 12 2023 lúc 9:38

\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\left(dkxd:x,y\ge0,x\ne y\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x^2}-\sqrt{y^2}}.\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}.\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{4\sqrt{xy}}{\sqrt{xy}}=4\)

\(B=\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\left(dkxd:x,y\ge0,x\ne y\right)\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}-2\sqrt{y}\)

\(=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-2\sqrt{y}\\ =0\)

Vậy biểu thức A và B không phụ thuộc vào biến.

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
NN
Xem chi tiết
YT
Xem chi tiết
L2
Xem chi tiết
NA
Xem chi tiết
BB
Xem chi tiết
PM
Xem chi tiết
MV
Xem chi tiết
H24
Xem chi tiết