VM

chứng minh phương trình có nghiệm với mọi a, b

x2 + ( a + b)x - 2(a2 -ab+ b2) =0

H24
16 tháng 2 2017 lúc 15:54

\(x^2+\left(a+b\right)^2x-2\left(a^2-ab+b^2\right)=0\) (1)

\(\left(1\right)\Leftrightarrow x^2+\left(a+b\right)x+\left(\frac{a+b}{2}\right)^2=\frac{\left(a+b\right)^2}{4}+2\left(a^2-ab+b^2\right)=0\)

\(\left(1\right)\Leftrightarrow\left(x+\frac{a+b}{2}\right)^2=\frac{\left(a+b\right)^2+8\left(a^2-ab+b^2\right)}{4}\left(2\right)\)

để (2) có nghiệm => VP >=0

Vậy ta cần chứng minh VP>=0 với mọi a,b

\(D=\left(a+b\right)^2+8\left(a^2-ab+b^2\right)=9\left(a+b\right)^2-24ab=9\left(a^2+2ab+b^2\right)-24ab\)

\(D=3\left(a^2-2ab+b^2\right)+a^2+b^2=3\left(a-b\right)^2+\left(a^2+b^2\right)\)

D là tổng của 3 số không âm => \(D\ge0\) =>dpcm

p/s: mình quen làm kiểu lớp 8 giờ nhìn lại lớp 9.

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
FS
Xem chi tiết
TT
Xem chi tiết
QD
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
NH
Xem chi tiết