NH

Cho phương trình: \(x^2+mx+n=0\)(x là ẩn số)

a) Giai phương trình khi m= -3; n=-4

b) Khi m=-3. tìm n để pt là một nghiệm nhỏ hơn 1 và ngiệm kia lớn hơn 1

c) chứng minh rằng nếu m,n là các số nguyên lẻ thì pt (1) k có nghiệm nguyên

NT
12 tháng 3 2017 lúc 20:01

a) thay m= -3; n= -4 vào pt ta có:

\(x^2\)-3x-4=0

\(\Delta\)= \(b^2\)-4ac=\(\left(-3\right)^2\)-4.1.(-4)=25>0

vậy pt có 2 nghiệm phân biệt:

x1= \(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{25}}{2.1}=-1\)

x2= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{25}}{2.1}=4\)

Bình luận (3)
H24
24 tháng 3 2017 lúc 14:06

\(x^2+mx+n=0\)(1)

a)Khi \(\left\{{}\begin{matrix}m=-3\\n=-4\end{matrix}\right.\) \(\left(1\right)\Leftrightarrow x^2-3x-4=0\) ta có: {a-b+c=0)

\(\Rightarrow\left[{}\begin{matrix}x_1=-1\\x_2=+4\end{matrix}\right.\)

b) khi \(m=-3\Leftrightarrow f\left(x\right)=x^2-3x+n\)

để f(x) có 2 nghiệm phân biệt \(\Rightarrow n< \dfrac{9}{4}\) (*)

Thảo mãn \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1>1\\x_2< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x_1< 1\\x_2>1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)< 0\\\end{matrix}\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\Leftrightarrow n-3+1< 0\Rightarrow n< 2\)(**)

Từ (*) & (**) \(\Rightarrow n< 2\)

Bình luận (2)