Bài 8: Rút gọn biểu thức chứa căn bậc hai

HT

Chứng minh:

\(\left(\frac{2a+1}{\sqrt{a^3-1}}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)=\sqrt{a}-1\)

H24
4 tháng 7 2020 lúc 21:57

Sửa đề: \(\left(\frac{2a+1}{\sqrt{a^3}-1}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)=\sqrt{a}-1\)

+) ĐK: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

+) \(VT=\left(\frac{2a+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\frac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\left(\frac{\left(1-\sqrt{a}+a\right)\left(\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\frac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\left(a-2\sqrt{a}+1\right)\)

\(=\frac{1}{\sqrt{a}-1}\left(\sqrt{a}-1\right)^2\)

\(=\sqrt{a}-1=VP\)

Vậy biểu thức đã được chứng minh.

Bình luận (0)

Các câu hỏi tương tự
SP
Xem chi tiết
TL
Xem chi tiết
LN
Xem chi tiết
TM
Xem chi tiết
SP
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
TN
Xem chi tiết
HP
Xem chi tiết