PB

Chứng minh “Bất đẳng thức tam giác mở rộng ”: Với ba điểm A, B, C bất kỳ, ta có AB + AC ≥ BC

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

CT
9 tháng 7 2018 lúc 16:57

- Nếu A, B, C không thẳng hàng thì 3 điểm A, B, C tạo thành 3 đỉnh của 1 tam giác.

Trong tam giác ABC ta có AB + AC > BC

- Nếu A, B, C thẳng hàng và A ở giữa B và C hoặc trùng B, C thì AB + AC = BC

• Nếu A nằm giữa B và C thì AB + AC = BC.

• Nếu B nằm giữa A và C thì AB + BC = AC nên AC > BC.

Suy ra: AC + AB > BC

• Nếu C nằm giữa A và B thì AC + CB = AB nên AB > BC.

Suy ra: AB + AC > BC.

Vậy với ba điểm A, B, C bất kỳ ta luôn có AB + AC ≥ BC

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
DH
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
HC
Xem chi tiết
TP
Xem chi tiết
NV
Xem chi tiết
HT
Xem chi tiết
PA
Xem chi tiết