HT

cho tứ giác ABCD . gọi O là giao điểm của hai đường chéo AC và BD . Chứng minh :
a) AC+BD>AB+CD
b)AC+BD>AD+ BC
(dùng bất đẳng thức tam giác)

 

H24
21 tháng 7 2023 lúc 17:52

a)
Ta có

 OA + OB > AB ( Bất đẳng thức tam giác )
 OC + OD > CD ( Bất đẳng thức tam giác )

Công dọc theo vế:

=> OA + OB + OC +OD > AB + CD

=> AC + BD > AB + CD

Bài toán được chứng minh

b)

 Ta có:

 OA + OD > AD ( Bất đẳng thức tam giác )
 OC + OB > CB ( Bất đẳng thức tam giác )

Công dọc theo vế:

=> OA + OD + OC + OB > AD + CB

=> AC + BD > AD + BC

 Bài toán được chứng minh

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
CC
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DS
Xem chi tiết
CR
Xem chi tiết
PA
Xem chi tiết
BD
Xem chi tiết