DT

Chứng minh bất đẳng thức :

\(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\) với \(a\ge1;b\ge1\)

NN
14 tháng 5 2016 lúc 11:28

Vì \(a\ge1;b\ge1\) nên \(\ln a;\ln b\) và \(\ln\frac{a+b}{2}\) không âm. Ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\ln\sqrt{ab}\Leftrightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)  (1)

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\) Áp dụng BĐT Cauchy

\(\Rightarrow2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a.\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay : 

     \(\ln a+\ln b\ge\frac{1}{2}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)  (2)

Từ (1) và (2) \(\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
DK
Xem chi tiết
NN
Xem chi tiết
DT
Xem chi tiết
NU
Xem chi tiết
LP
Xem chi tiết
NL
Xem chi tiết
VD
Xem chi tiết
NT
Xem chi tiết