Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

H24

 chứng minh :a) 11+6\(\sqrt{2}\)= (3+\(\sqrt{2}\))\(^2\)

                      b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)=6

                      c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)= -2

                      d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)=-4

NT
12 tháng 10 2023 lúc 23:01

a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)

\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)

b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}+3-\sqrt{2}=6\)

c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

Bình luận (0)
MH
12 tháng 10 2023 lúc 23:02

a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)

b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}+3-\sqrt{2}=6\)

c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

Bình luận (0)