SM

\(Chox,y>0\)

\(\log_{\sqrt{3}}\left[\dfrac{2x+y}{4x^2+y^2+2xy+2}\right]=2x\left(2x-3\right)+y\left(y-3\right)+2xy\)

Tính \(P_{Max}=\dfrac{6x+2y+1}{2x+y+6}\)


 

 

NL
6 tháng 7 2021 lúc 21:24

\(log_{\sqrt{3}}\left(2x+y\right)-log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)=\left(4x^2+y^2+2xy+2\right)-3\left(2x+y\right)-2\)

\(\Leftrightarrow log_{\sqrt{3}}\left(2x+y\right)+2+3\left(2x+y\right)=log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)+\left(4x^2+y^2+2xy+2\right)\)

\(\Leftrightarrow log_{\sqrt{3}}\left(6x+3y\right)+\left(6x+3y\right)=log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)+\left(4x^2+y^2+2xy+2\right)\)

Xét hàm \(f\left(t\right)=log_{\sqrt{3}}t+t\) với \(t>0\)

\(f'\left(t\right)=\dfrac{1}{t.ln\sqrt{3}}+1>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow6x+3y=4x^2+y^2+2xy+2\)

\(\Leftrightarrow4x+y=\left(x+y-1\right)^2+1+3\left(x^2+1\right)-3\ge2\left(x+y-1\right)+6x-3\)

\(\Leftrightarrow4x+y\ge2\left(4x+y\right)-5\)

\(\Leftrightarrow4x+y\le5\)

\(\Rightarrow P=\dfrac{2x+y+6+\left(4x+y-5\right)}{2x+y+6}=1+\dfrac{4x+y-5}{2x+y+6}\le1\)

\(P_{max}=1\) khi \(x=y=1\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
LC
Xem chi tiết
KT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết